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The solution is given for the conjugate nonsteady problem of heat exchange in 
the region of the stagnation point of an axisymmetric body with spherical 
blunting with stepwise variation of the stream temperature. 

Upon the insertion of a body into a stream having a temperature different from the 
temperature of the body the following scheme of the process of nonsteady heat exchange is 
possible. If one neglects the heating (cooling) of the thin layer of liquid (gas) adjacent 
to the body, then one can assume that at the initial time there was a temperature jump in 
the entire volume of liquid down to the surface, and then equalization of the temperatures 
in the body and the stream occurs. The problem consists in determining the characteristics 
of the heat exchange in the region of the stagnation point of an axisymmetric body with 
spherical blunting under these nonsteady conditions. 

Published experimental data [i, 2] indicate a possible dependence of the coefficient 
of heat exchange under nonsteady conditions on time, the thermophysical properties of the 
body, and its characteristic size in the direction of heat flow. In other reports [3, 4] 
such a dependence was not detected or its possibility is denied. 

In the theoretical solution of such prablems, one usually assumes [5, 6] that the sur- 
face temperature of the body remains constant in the process of nonsteady heat exchange, 
which holds in certain limiting cases. According to the data of [5, 6], the characteristics 
of nonsteady heat exchange can depend on time and the properties of the fluid and the mate- 
rial of the body. In [6] it is concluded that nonsteady heat exchange has a quasisteady 
character for the typical experimental conditions in shock tubes and other similar devices. 
In [5, 6] a subsonic, laminar, steady stream is considered and the properties of the fluid 
are assumed to be constant. 

With allowance for the enumerated assumptions, the problem has the following formula- 
tion: 
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tf (x, o~, ~*)= t~, (8) 

at  b (x, -- 6, "c*) -= O. (9) 
ag 

Using the stream function ~ = (vB/2) x/a(x/D)xf [5], where the variable f is connected 
with the velocity components by the relations u = Bxf' and v = --(2~8)x/af, we can satisfy 
the continuity equation. The derivative ~t/~x in the energy equation (3) is usually neg- 
lected [5, 6] on the grounds that at the stagnation point it is equal to zero by symmetry. 
We assume that in the region of the stagnation point the body consists of a hollow sphere 
of thermally conducting material of thickness ~, and the temperature drop over its thick- 
ness can be neglected. Such conditions are realized in experiment. This condition allows 
us to replace the equation of heat conduction of the wall by the expression 

q = 6cpdt/d~*, ( 1 0 )  

which allows for the time variation of the surface temperature of the wall. In Eq. (i0) q 
is the specific heat flux at the surface, co is the volumetric heat capacity, and z* is the 
time. The heat flux at the inner surface of the wall is assumed to equal zero. We assume 
that heat transfer in the body is one-dimensional. This condition is usually satisfied in 
heat-flux probes [i, 2]. 

With allowance for the above comments, the formulation of this problem in dimensionless 
form includes the momentum equation 

[" + H "  Jr i { I  --f '~) =- 0, ( I I )  
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the s o l u t i o n  of  which, w i t h  al lowance fo r  the boundary cond i t ions  f (0 )  = f ' ( 0 )  : 0 and 
f ' (~)  = l ,  is [5] 
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the energy equation 
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where 0 = (t -- t~)/(to -- t~); T = 28z*/Pr; ~ = y(28/v) x/a; 8 is the velocity gradient at 
the stagnation point, equal to 3U~/2R for a sphere; and the boundary conditions 
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where Re = BD=/3~ for a sphere; kcp = (CP)b/(Cpp)f; parameters with the subscript b refer 
to the body and those with f to the fluid. 

The unknown quantity is the Nusselt number Nu, defined by the dependence 

V ~  Ob \ al  ,~=o" (18) 

From (11) and (13)- (18)  i t  fo l l ows  that  
Nu 

- - c p ( P r ,  Re, 6/D, (CP)b/(cvp)f , [Sx*), ( 1 9 )  g ~ 7  

i.e., besides the usual parameters Such as the Prandtl and Reynolds numbers Pr and Re, Nu 
depends on the dimensionless wall thickness, the ratio of the products of the specific heat 
times the material density of the body and the fluid, and the dimensionless time. The in- 
fluence of the ratio of the coefficients of thermal conductivity of the body and the fluid 
times the complex Nu/i~'~], which exists under ~ actual conditions, was investigated in [7]. 

The calculations were made on a computer for ranges of Pr from 0.015 to 50, Re from 102 
to l0 s , ~/D from 0.001 to 0.2, and kcp from 0.3 to 0.9 for Pr > 2 and from 2"i0 s to 6"103 
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Fig. i. Examples of the dependence of the complex Nu//2~- 
on the dimensionless time: i, 4, 7, 8, 9) Re = 103 , ~/D = 
0.2, kcp = 0.3; i) Pr = 50; 4) 20; 7) i0; 8) 5; 9) 0.7; 2, 
3, 5) Pr = 20, 6/D = 0.2; 2) Re = 106 , kc@ = 0.3; 3) Re = 
10 3 , kcp = 0.9; 5) Re = 102 , kcp = 0.3; 6) Pr = 20, kco = 
0.3; Re = 103 , 6/D = 0.05. 

Fig. 2. Dependence of Nu/?R-~ on the complex (Nu/VRe~,, cal- 
culated from Eqs. (23) and (24): i-ii) Re = 10a; i) Pr = 5, 
6/D = 0.01; 2) i0, 0.01; 3) 20, 0.01; 4) 5, 0.05; 5) i0, 
0.05; 6) 20, 0.05; 7) 2, 0.2; 8) 5, 0.2; 9) i0, 0.2; i0) 20, 
0.2; ii) 50, 0.2; 12, 13) Pr = 20, ~/D = 0.2; 12) Re = 102; 
13) i0 ~ . 

for Pr ~ 0.7. The values of the parameter kcp correspond to combinations of bodies made of 
metals or certain insulators with streams of gases, water, and certain more viscous liquids. 

The calculations showed that the complex Nu/~ essentially depends on time, the 

Prandtl number, and the ratio 6/D and to a lesser extent on Re and kcp (Fig. i). The function 
Nu ~ Re ~ characteristic of steady heat exchange in laminar flow, will be different under 
nonsteady conditions. With increasing time Nu/~'Re decreases, approaching a constant (quasi- 

steady) value. An increase in Pr and 5/D leads to an increase in Nu/~Re . The quasisteady 

value of Nu/(~- grows with an increase in ~/D and Re, approaching a constant value. 

An approximation of the limiting dependence of Nu/~N--e on Pr for 5/D i> 0.2, Re ~ 105 , 

and kcp = 0.3-0.9 leads to the expression 

N u / V R e  = 1.38 P r  ~ , (20) 

which is in satisfactory agreement with the dependence for the case of steady heat exchange 
[8], 

N u / ~  = 1,32 P r  ~ (21) 

Equations (20) and (21) approximate the results of numerical calculation for the values of 
Pr = 0.7-50 and 0.7-2, respectively. 

Under nonsteady conditions with Pr < i the heat exchange has a peculiarity, consisting 
in the fact that for Re = i0=-i0 ~, kcp = 0.3-6"103, 6/D = 0.01-0.3, and Pr = 0.015-1 the 
enumerated parameters hardly affect the dependence of Nu/~Re on the dimensionless time. 

For values of T from 0.025 to 1.4, when the variation of Nu/~Re with time has practically 

ceased, this dependence is approximated with an error of less than 5% by the expression 

Nu 
= 1,34 [1 - -  exp ( - -  O, 15 - -  1,96 "I;)] - 1 .  ( 2 2 )  

V e e  
At r < 0.025, Nu/~f~ = O.18/T. 
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The following equations can be used to determine the value of the complex Nu/~ in 

the range of variation of Pr from 2 to 50, of 8/D from 0.01 to 0.2, of Re from 102 to 106 , 
and of kcp from 0.3 to 0.9: 

Nu _ (  Nu ) {1--exp[--1,8(1--e-12~176 (23) 
V-~e ~ qu.st 

( N~e. ) { [ 8 . ,  52,5 8 exp(--0,157Pr + 0.25)J}(1--1.59Re-~ (24) qu.st= l'44Pr~ 1--exp --52.5 D -D- 

The corrections to the values of Nu/~e calculated from these equations can be estimated . 
with the help of Fig. 2. 

The calculations qualitatively confirm the dependence, discovered in the experiments 
of [i, 2], of the coefficient of heat exchange under nonsteady conditions on time, the 
thermophysical properties of the material of the body, and the wall thickness. 

An estimate of the time of significant variation of the complex Nu/~Re gives a value 

on the order of 10 -5 sec for air with R = i0 -= m and U~ = 300 m/sec, while for water with 
the same radius and U~ = 1 m/sec it gives 10 -2 sec, which is considerably less than the 
time of variation of the heat-exchange characteristics found from experiment. The variations 
of the heat-exchange coefficient with time observed in experiments cannot be explained by 
relaxation of the boundary layer after a stepwise change in the stream temperature. In non- 
steady heat-exchange processes with a characteristic time on the order of that given above, 
the heat-exchange intensity can differ from the quasisteady value, and the heat-exchange 
characteristics will depend not only on the stream parameters and the properties of the gas 
but also on the thermophysical properties and thickness of the body with which the stream 
interacts. 

It also follows from the results obtained that periodic stepwise variation of the stream 
temperature (or some approximation to it) may be an efficient means of controlling the heat- 
exchange intensity, permitting a considerable increase in it. 
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